A three-step kinetic mechanism for selective inhibition of cyclo-oxygenase-2 by diarylheterocyclic inhibitors.

نویسندگان

  • M C Walker
  • R G Kurumbail
  • J R Kiefer
  • K T Moreland
  • C M Koboldt
  • P C Isakson
  • K Seibert
  • J K Gierse
چکیده

Cyclo-oxygenase (COX) enzymes are the targets for non-steroidal anti-inflammatory drugs (NSAIDs). These drugs demonstrate a variety of inhibitory mechanisms, which include simple competitive, as well as slow binding and irreversible inhibition. In general, most NSAIDs inhibit COX-1 and -2 by similar mechanisms. A unique class of diarylheterocyclic inhibitors has been developed that is highly selective for COX-2 by virtue of distinct inhibitory mechanisms for each isoenzyme. Several of these inhibitors, with varying selectivity, have been utilized to probe the mechanisms of COX inhibition. Results from analysis of both steady-state and time-dependent inhibition were compared. A generalized mechanism for inhibition, consisting of three sequential reversible steps, can account for the various types of kinetic behaviour observed with these inhibitors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of cytotoxicity mechanism of two cyclo-oxygenase-2 inhibitors in leukemia cell line

Introduction: Leukemia is considered one of the main causes of death, and current chemotherapeutic agents are unable to provide optimal responses due to chemo-resistance. Therefore, there is a constant need for new drugs. Cyclooxygenase- 2 (COX-2) inhibitors can be helpful by reducing the necessary dose of routine chemotherapeutic drugs. Herein, we evaluated the cytotoxicity activity as well...

متن کامل

Licofelone: A Novel Non-Steriodal Anti-Inflammatory Drug (NSAID) in Arthritis

Arthritis refers to different medical conditions associated with disorder of the primary structures that determine joint functions such as bones, cartilage and synovial membranes. Drug discovery and delivery to retard the degeneration of joint tissues are challenging. Current treatments of different arthritis involves administration of ideal non-steroidal anti-inflammatory drugs (NSAIDs) but ar...

متن کامل

Cyclo-oxygenase-2: pharmacology, physiology, biochemistry and relevance to NSAID therapy.

Cyclo-oxygenase is expressed in cells in two distinct isoforms. Cyclo-oxygenase-1 is present constitutively whilst cyclo-oxygenase-2 is expressed primarily after inflammatory insult. The activity of cyclo-oxygenase-1 and -2 results in the production of a variety of potent biological mediators (the prostaglandins) that regulate homeostatic and disease processes. Inhibitors of cyclo-oxygenase inc...

متن کامل

Selective cyclo-oxygenase-2 inhibitors impair adipocyte differentiation through inhibition of the clonal expansion phase.

Selective cyclo-oxygenase-2 (COX-2) inhibitors are nonsteroidal antiinflammatory drugs used in the management of inflammatory diseases. We demonstrate here that inhibition of the COX-2 enzyme impairs adipocyte differentiation. The inhibition of adipogenesis occurs in the early clonal expansion phase. In particular, COX-2 inhibition limits cell cycle reentry required before terminal adipocyte di...

متن کامل

Cox-2 inhibitors and the risk of cardiovascular thrombotic events.

In 1971, Vane showed that the analgesic action of traditional NSAIDs relies on inhibition of the cyclo-oxygenase (COX) enzyme, which in turn results in reduced synthesis of proalgesic prostaglandins. Two decades later COX was shown to exist as two distinct isoforms. The constitutive isoform COX-1, supports the beneficial homeostatic functions whereas the inducible isoform, COX-2 becomes up regu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 357 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2001